{DT} package outputs pretty tables as .html files, using the JavaScript language to obtain interactivity. Therefore, it’s best to use them by including the code within a Quarto or RMarkdown document.
Read some data
Usually, when creating a report in Quarto/Rmarkdown, we want to summarise the entire analysis. First, we read the data and provide a short description:
Code
skimr::skim(abm)
Data summary
Name
abm
Number of rows
581
Number of columns
22
_______________________
Column type frequency:
numeric
22
________________________
Group variables
None
Variable type: numeric
skim_variable
n_missing
complete_rate
mean
sd
p0
p25
p50
p75
p100
hist
casenum
0
1.00
291.00
167.86
1.0
146.0
291.0
436.00
581.0
▇▇▇▇▇
year
72
0.88
74.46
3.11
68.0
72.0
75.0
78.00
80.0
▅▅▇▅▇
month
81
0.86
6.63
3.20
1.0
4.0
7.0
9.00
12.0
▇▅▇▆▇
age
81
0.86
13.66
19.69
0.1
0.6
3.0
20.25
85.0
▇▂▁▁▁
race
85
0.85
1.42
0.49
1.0
1.0
1.0
2.00
2.0
▇▁▁▁▆
sex
81
0.86
1.44
0.50
1.0
1.0
1.0
2.00
2.0
▇▁▁▁▆
blood_wbc
141
0.76
13.86
8.53
0.6
8.3
12.0
17.02
72.4
▇▃▁▁▁
blood_neut_pct
146
0.75
63.30
19.64
0.0
52.0
67.0
78.00
96.0
▁▂▅▇▆
blood_band_pct
153
0.74
6.68
10.63
0.0
0.0
2.0
8.00
66.0
▇▁▁▁▁
blood_gluc
258
0.56
138.04
54.42
1.0
105.0
125.0
155.00
410.0
▁▇▂▁▁
csf_gluc
129
0.78
58.32
34.03
0.0
34.0
61.0
77.00
240.0
▅▇▁▁▁
csf_prot
249
0.57
155.72
215.46
1.0
41.0
83.0
180.00
1740.0
▇▁▁▁▁
csf_rbc
271
0.53
1557.69
6660.79
0.0
4.0
27.5
280.25
69100.0
▇▁▁▁▁
csf_wbc
101
0.83
2492.90
7455.42
0.0
77.0
336.5
1600.00
100000.0
▇▁▁▁▁
csf_neut_pct
132
0.77
59.74
36.08
0.0
26.0
75.0
90.00
100.0
▅▂▂▃▇
csf_lymph_pct
162
0.72
41.12
44.06
0.0
8.0
25.0
74.50
552.0
▇▁▁▁▁
csf_mono_pct
165
0.72
1.20
7.97
0.0
0.0
0.0
0.00
97.0
▇▁▁▁▁
gram
313
0.46
1.63
1.80
0.0
0.0
1.0
4.00
6.0
▇▁▁▃▁
csf_cult
307
0.47
1.39
1.69
0.0
0.0
1.0
2.00
6.0
▇▁▁▁▁
blood_cult
434
0.25
1.10
1.73
0.0
0.0
1.0
1.00
11.0
▇▁▁▁▁
subset
0
1.00
1.51
0.50
1.0
1.0
2.0
2.00
2.0
▇▁▁▁▇
abm
80
0.86
0.43
0.50
0.0
0.0
0.0
1.00
1.0
▇▁▁▁▆
Run analyses
We want to check whether any of the variables are associated with the outcome, so we can run many univariate logistic regressions.